
Harnessing Temporal Dynamics and Content: An Ensemble of
Gradient Boosting Machines for News Recommendation

Tomomu Iwai∗
PKSHA Technology Inc.,

tomomu_iwai@pkshatech.com, Japan

Akihiro Tomita∗
PKSHA Technology Inc.,

akihiro_tomita@pkshatech.com,
Japan

Tomoyuki Arai∗
PKSHA Technology Inc.,

tomoyuki_arai@pkshatech.com,
Japan

Hiroki Ogawa∗
PKSHA Technology Inc.,

hiroki_ogawa@pkshatech.com, Japan

Takuma Saito∗
PKSHA Technology Inc.,

takuma_saito@pkshatech.com, Japan

Abstract
This paper presents our approach for Team Tom3TK that achieved
third place in the ACM RecSys Challenge 2024, organized by Ekstra
Bladet. The challenge centered on large scale news recommenda-
tions with over 380 million impression logs and aimed to predict
which article a user will click on from a series of articles displayed
in a specific session. Our approach utilizes a LightGBM ensemble
model, integrating article timeliness features with content-based
recommendations from historical implicit feedback and employs
advanced multilingual embedding models. Experiments revealed
the significant impact of timeliness and content-based features, the
importance of suitable embedding models, and the phenomenon of
performance plateauing with the expansion of training samples.

CCS Concepts
• Information systems; • Computing methodologies → Ma-
chine learning; Machine learning algorithms;

Keywords
Recommender Systems, News Recommendation, Sentence Embed-
dings
ACM Reference Format:
Tomomu Iwai, Akihiro Tomita, Tomoyuki Arai, Hiroki Ogawa, and Takuma
Saito. 2024. Harnessing Temporal Dynamics and Content: An Ensemble of
Gradient Boosting Machines for News Recommendation. In ACM RecSys
Challenge 2024 (RecSys Challenge ’24), October 14–18, 2024, Bari, Italy. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3687151.3687159

1 INTRODUCTION
Recommendation systems are crucial for filtering and suggesting
contents to users. News recommendation systems, in particular,
possess two distinctive characteristics. Firstly, they rely heavily
on implicit feedback, such as click history, due to the unavailabil-
ity of explicit feedback like rating data. Secondly, news articles
∗Authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RecSys Challenge ’24, October 14–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1127-5/24/10
https://doi.org/10.1145/3687151.3687159

have extremely short lifespans, making timely recommendations
essential.

The ACM RecSys Challenge 2024 [1], organized by Ekstra Bladet,
a prominent news publisher in Denmark, focused on large scale
news recommendations. The challenge aimed to predict which
article a user will click on from a series of articles displayed during
a specific session. To benchmark performance for the challenge,
the Ekstra Bladet News Recommendation Dataset (EB-NeRD) was
released. This Danish news dataset contains over 2.3 million users,
more than 120 thousand articles, and exceeds 380million impression
logs. Logs were collected from active users over six weeks in 2023,
with the performance evaluated using the ROC-AUC metric.

In this paper, we present the third-place approach from team
Tom3TK, illustrated in Figure 1. Our solution integrates timeliness
and content-based features to enhance the relevance of news recom-
mendations. A LightGBM ensemble effectively combines features
that capture the temporal dynamics of news articles with advanced
content similarity measures. This approach addresses the unique
challenges of news recommendation, where both the freshness of
content and its alignment with implicit user interests from histor-
ical click data are crucial. Our experiments aimed to understand
the impact of different features, embedding models, and training
dataset sizes on the model’s performance. All code required for
replication of this study is published on https://github.com/akihiro-
tomita/recsys-2024-tom3tk.

2 FEATURE ENGINEERING STRATEGY
2.1 Dataset Overview
EB-NeRD consists of user logs collected over a six-week period
from April 27 to June 8, 2023. The data is divided into three sets:
training, validation, and test. Each set includes a. 7-day period of
behavior logs and b. the users’ click history 21 days prior to the
behavior logs.

The behavior logs show how users interacted with news arti-
cles. The data includes information about articles that were inview,
meaning the articles that were displayed to a specific user. Inview
articles within a timeframe are grouped into impressions, each as-
signed a unique impression_id. The primary task of the competition
is to predict which article a user clicked within each impression.

The history logs capture the users’ click history for the 21 days
before the behavior logs. The data includes details about when a

https://doi.org/10.1145/3687151.3687159
https://doi.org/10.1145/3687151.3687159


RecSys Challenge ’24, October 14–18, 2024, Bari, Italy Tomomu Iwai et al.

Figure 1: Overall prediction diagram of the constructed recommendation system

user clicked on an article, the duration they spent reading it, and
the extent to which they scrolled through the article.

In addition to these main data types, basic article information
such as publication dates and article contents, and precalculated em-
bedding data from text-base and image-base models were provided
for the articles listed across the datasets.

2.2 Article Timeliness
In news recommendation systems, the freshness of articles is cru-
cial. We engineered features to capture this timeliness, such as the
elapsed time from publication to inview_time. To understand the
relative freshness of each article within an impression, we used two
methods: ranking the articles by elapsed time and normalizing the
elapsed times within the impression. These approaches help gauge
an article’s likelihood of being clicked, as newer content tends to
attract more user attention. Incorporating these timeliness features
enhances the relevance of our recommendations.

2.3 Content-based Features
Content-based recommendation is a method used in recommenda-
tion systems to suggest items to users based on the attributes of
the items and the user’s past interactions or preferences.

We constructed latent representations of user preferences based
on their article reading history. These representations were then
used to compute cosine similarity with the latent representations
of target articles, serving as features in our model.

Rather than using the pre-computed embeddings provided by the
competition organizers, we opted to recalculate article embeddings
ourselves. For this task, we employed the multilingual-e5-large-
instruct model [2]. At the time of our research, this model was
considered state-of-the-art (SOTA) according to the Danish lan-
guage results in the Scandinavian Embedding Benchmark [3].

We explored multiple strategies for computing user latent repre-
sentations based on their article reading history: a. Utilizing the
entire historical record of articles b. Focusing on the most recent
reading history c. Applying weights based on metrics such as scroll

percentage and read time d. Constructing category-specific rep-
resentations using only articles from the same category. Among
the strategies explored, our results indicated that applying weights
based on engagement metrics, particularly scroll percentage, was
the most effective approach.

In addition to average-based user embeddings, we implemented
a more computationally intensive approach. We calculated cosine
similarities between each article in a user’s history and the articles
in the target impression_id. From these similarity scores, we de-
rived additional features such as the maximum similarity, minimum
similarity, and the 90th percentile of similarities.

2.4 Collaborative Filtering
Collaborative filtering is a technique used in recommendation sys-
tems to suggest items to users based on the preferences and behav-
iors of other users.

While collaborative filtering techniques have proven effective
in recent global competitions, such as the H&M Personalized Fash-
ion Recommendations [4] and the OTTO Multi-Objective Recom-
mender System [5], their efficacy is significantly diminished in
the domain of news recommendation. This reduced effectiveness
can be attributed to the inherent factor to news consumption pat-
terns. The rapid obsolescence and the continuous influx of news
articles results in a much shorter content lifespan. Consequently,
traditional collaborative filtering approaches, which rely heavily
on historical user-item interactions, face substantial limitations in
capturing the dynamics of news recommendation scenarios.

We explored a wide range of collaborative filtering techniques
but found that most failed to significantly improve predictive ac-
curacy. The sole exception was the Item2Vec approach [6], which
we adapted to our context by treating each article as a word and
a user’s reading history as a sentence. This method allowed us to
derive latent representations for individual articles. However, even
this approach yielded only marginal performance improvements.
The limited efficacy of collaborative filtering techniques can be



Harnessing Temporal Dynamics and Content RecSys Challenge ’24, October 14–18, 2024, Bari, Italy

largely attributed to the pervasive cold-start problem in news rec-
ommendation: there is minimal overlap between articles in a user’s
reading history and those presented in current recommendations.

2.5 Leaky Inview Features
In this competition, we can exploit all information recommended
by the current recommendation system, including future inview
data that would typically be unavailable in real-time production
environments. Although such future information would be inac-
cessible in a real-world scenario, its use was permitted within the
competition framework.

Leveraging this data, we engineered several potent features such
as; the frequency of inview occurrences for each article id across
various time buckets (e.g., 5 minutes, 30 minutes, 24 hours), the
count of inview article for specific article ids per individual user;
the co-occurrence frequency of pairs of article ids within the same
impression.

2.6 Miscellaneous Techniques
Aside from our main strategies, we employed additional feature
engineering techniques.

For key features, we augmented their absolute values with rela-
tive metrics within each impression_id, such as the ranking within
the impression, and the ratio to the maximum value in the impres-
sion. In addition, we computed various statistical measures across
each impression_id, including mean, min, max, skew. We then
calculated the deviation of individual feature values from these
statistical measures, creating new features that captured relative
positioning of the target article id within each impression context.

This approach to feature engineering enhanced our model’s abil-
ity to discern subtle differences between articles within the same
impression, leading to higher AUC. The final number of features
used in our approach is 432.

3 MODEL AND TRAINING STRATEGY
3.1 Model
For our model, we utilized LightGBM [7] with the lambda rank
loss objective [8]. Our approach involved eight models, forming
an ensemble to enhance robustness and predictive accuracy. We
simply averaged the outputs of these models to achieve a final
prediction. Each of the eight LightGBM models were trained with
the same features, but on different subsets of the data to improve
generalization and reduce overfitting. Detailed hyperparameter
configurations can be found in the accompanying solution code.

3.2 Training Strategy
Due to memory and computational constraints, we decided to parti-
tion the training and validation datasets into 100 chunks each. For
training, we randomly selected different 20 chunks (around 2.6M
samples) from the 200 chunks for each of the eight models. This
number was experimentally determined; usingmore than 20 chunks
did not improve performance but linearly increased training time.
The training and validation dataset covered different dates, and
mixing chunks from the two datasets improved the performance

Table 1: Impact of Leaky Features

Setting ROC-AUC Num of Features

Leaky 0.8525 436
Non-Leaky 0.7775 107

on the test dataset. To further enhance robustness, we varied the
epochs and random states for each model.

3.3 Result
Our methodology achieved third place in final leaderboards of
the challenge. The primary evaluation metric, ROC-AUC, reached
0.8707, demonstrating the effectiveness of our model.

4 EXPERIMENTS
4.1 Experiments Setting
We conducted experiments to better understand our model’s com-
ponents and impacts. Due to computational constraints, we used a
small dataset (2% of full data) for most experiments. The reported
ROC-AUC scores are based on the validation dataset using a sin-
gle trained LightGBM model. While these scores are lower than
our final competition results, they provided valuable insights. Im-
portantly, performance trends from this small dataset consistently
correlated with leaderboard standings, validating our experimental
approach and guiding our optimization efforts.

4.2 Leaky Features
In this challenge, future inview information was available, which is
not realistic in a practical scenario. To address this issue, we calcu-
lated the model’s accuracy after removing all features that could po-
tentially cause data leakage, specifically those derived from future
inview data, total_inviews, total_pageviews, and total_read_time.
This reduction in features decreased the total number from 436 to
107.

After removing the potentially leaky features, the ROC-AUC
score decreased from 0.8525 to 0.7775, a reduction of approximately
0.075 points, as shown in Table 1. This significant drop in perfor-
mance indicates that the features derived from future information
had a substantial impact on the model’s predictive power.

Table 2 presents the importance weights of the top features in
the Leaky Model, categorized for convenience. The importance was
calculated based on the gain from LightGBM. The category with
the highest weight is ”Leaky,” confirming that the model heavily
relies on future information that has leaked into the training data.
Timeliness and Content-based has a substantial weight as well,
indicating their significant impact on the model’s predictions. As
anticipated, the Collaborative Filtering category shows minimal
contribution to the model’s predictions.

4.3 Comparison of Article Embedding Models
For content-based feature engineering, it is crucial to represent arti-
cleswith high-quality latent representations. While the competition
host provided pre-computed latent representations for the articles,



RecSys Challenge ’24, October 14–18, 2024, Bari, Italy Tomomu Iwai et al.

Table 2: Importance Weights

Feature Category Importance Weight

Timeliness 29.7%
Content-based 23.1%
Collaborative Filtering <0.1%
Leaky 37.3%
Basic* 9.8%

*’Basic’ category includes features such as the number of articles
displayed.

Table 3: Embedding Model Comparison

Embedding Model ROC-AUC

multilingual-e5-large-instruct 0.8525
bge-m3 / dense 0.8515
Word2Vec* 0.8476
BERT* 0.8427
Contrastive* 0.8507
xlm* 0.8458
Image* 0.8430

* Provided by the competition host

we conducted additional experiments using latest models’ embed-
dings. We report results of experiments using the multilingual-e5-
large-instruct model and the bge-m3 model [9].

As demonstrated in Table 3, latest models such as multilingual-
e5-large-instruct and bge-m3 outperform other embeddings models.
Themultilingual-e5-large-instruct model achieved the highest ROC-
AUC score of 0.8525, closely followed by the bge-m3 / dense model
at 0.8515. These results surpass the best-performing host-provided
embedding (Contrastive) by 0.0018 and 0.0008 points, respectively.

Models like Word2Vec and BERT, which were not primarily in-
tended for sentence embeddings, demonstrate markedly lower per-
formance, with ROC-AUC scores of 0.8476 and 0.8427, respectively.
This performance gap underscores the importance of using embed-
ding models specifically tailored for sentence-level representations
in recommendation tasks.

4.4 Training Dataset Size
We investigated the impact of training dataset size to the perfor-
mance. It is generally assumed that larger training datasets result
in better performance. However, increased memory usage and com-
putation time can obstruct efficient experimentation. Therefore,
identifying the dataset size at which improvements in accuracy
begin to saturate is valuable. According to the results depicted in
Figure 2, accuracy improves gradually up to 10 million samples,
beyond which only marginal improvements are observed. Further-
more, in this competition, it was found that a dataset size ranging
from 0.2M to 2M was sufficient to make a reasonable assessment of
the experimental results.

Figure 2: Training data size impact to model performance

5 CONCLUSION
In this paper, we present our third place approach in the 2024 ACM
RecSys Challenge organized by Ekstra Bladet. Our solution focuses
on integrating timeliness and content-based features to enhance the
relevance of news recommendations. In many fields where large
models such as LLM play a dominant role, it has been confirmed
that the GBDT (Gradient Boosting Decision Tree) approach remains
effective in recommendation systems.

Additionally, our experiments revealed three key findings: first,
both timeliness and content relevance significantly impact predic-
tion results. Second, selecting an appropriate embedding model
enhances performance. Third, performance saturation occurs be-
yond a certain number of training samples. These insights provide
valuable direction for future improvements in recommendation
system design and data utilization strategies.

Lastly, we highlight critical limitations in current recommenda-
tion system competitions, which primarily rely on logs generated
by pre-existing algorithms. This structure risks merely replicating
existing systems rather than fostering genuine advancements. To
address this, we propose a paradigm shift towards using data logs
gathered through random or probabilistic sampling. This would
mitigate algorithmic biases and provide a more accurate measure
of a model’s real-world efficacy. By redesigning competition frame-
works to incorporate such unbiased data collection, we can better
evaluate and enhance the performance of recommendation systems
in practical scenarios.

References
[1] 2024. RecSys Challenge 2024. https://www.recsyschallenge.com/2024/
[2] Wang, Liang, et al. 2024. Multilingual e5 text embeddings: A technical report.

arXiv preprint arXiv:2402.05672 (2024).
[3] Enevoldsen, Kenneth. 2023. Scandinavian Embedding Benchmark. Retrieved

July 7, 2024, from https://kennethenevoldsen.github.io/scandinavian-embedding-
benchmark/.

[4] Carlos García Ling, ElizabethHMGroup, FridaRim, inversion, Jaime Ferrando,
Maggie, neuraloverflow, xlsrln. 2022. H&M Personalized Fashion Recommen-
dations. Kaggle. https://kaggle.com/competitions/h-and-m-personalized-fashion-
recommendations

[5] Andreas Wand, Philipp Normann, Sophie Baumeister, Timo Wilm, Walter Reade,
Maggie Demkin. 2022. OTTO – Multi-Objective Recommender System. Kaggle.
https://kaggle.com/competitions/otto-recommender-system

https://www.recsyschallenge.com/2024/
arXiv:2402.05672
https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/
https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/
https://kaggle.com/competitions/h-and-m-personalized-fashion-recommendations
https://kaggle.com/competitions/h-and-m-personalized-fashion-recommendations
https://kaggle.com/competitions/otto-recommender-system


Harnessing Temporal Dynamics and Content RecSys Challenge ’24, October 14–18, 2024, Bari, Italy

[6] Barkan, Oren, and Noam Koenigstein. 2016. Item2vec: neural item embedding
for collaborative filtering. In 2016 IEEE 26th International Workshop on Machine
Learning for Signal Processing (MLSP).

[7] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting decision
tree. Advances in neural information processing systems 30 (2017).

[8] C.J.C. Burges, R. Ragno and Q.V. Le. 2006. Learning to Rank with Non-Smooth
Cost Functions. Advances in Neural Information Processing Systems, 2006.

[9] Chen, Jianlv, et al. 2024. Bge m3-embedding: Multi-lingual, multi-functionality,
multi-granularity text embeddings through self-knowledge distillation. arXiv
preprint arXiv:2402.03216 (2024).

arXiv:2402.03216

	Abstract
	1 INTRODUCTION
	2 FEATURE ENGINEERING STRATEGY
	2.1 Dataset Overview
	2.2 Article Timeliness
	2.3 Content-based Features
	2.4 Collaborative Filtering
	2.5 Leaky Inview Features
	2.6 Miscellaneous Techniques

	3 MODEL AND TRAINING STRATEGY
	3.1 Model
	3.2 Training Strategy
	3.3 Result

	4 EXPERIMENTS
	4.1 Experiments Setting
	4.2 Leaky Features
	4.3 Comparison of Article Embedding Models
	4.4 Training Dataset Size

	5 CONCLUSION
	References

