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Abstract
News recommendation is an important task in the digital media
landscape, challenged by the rapid decline of article relevance and
the need for personalized content delivery. The RecSys Challenge
2024, organized by Ekstra Bladet, focuses on this problem using the
EB-NeRD dataset. This paper presents the solution developed by
team “:D”, which secured the first place in the challenge. Our ap-
proach combines Transformers, Gradient Boosting Decision Trees
(GBDT), and ensemble techniques in a three-stage recommendation
pipeline. We introduce time-aware feature engineering methods
and effective data-splitting strategies to address the temporal na-
ture of news articles and improve model generalization. Through
extensive experiments and ablation studies, we evaluated our sys-
tem’s performance, achieving an Area Under the ROC Curve (AUC)
of 0.8924. Our analysis also examines the effects of data leakage,
offering considerations for the practical implementation of news
recommendation systems.
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1 Introduction
Online news recommendation systems have become crucial tech-
nology in the age of information overload, significantly influencing
user information access and consumption behavior. These systems
aim to improve user engagement by understanding user interests
and providing the most relevant news in a timely manner. How-
ever, there exist various technical challenges, including modeling
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user preferences based on behavior, addressing the cold start prob-
lem, and considering the time-decaying nature of news articles
[5, 11, 15].

To address these challenges, RecSys Challenge 2024 established
a news article recommendation task using EB-NeRD (Ekstra Bladet
News Recommendation Dataset), a large-scale news recommenda-
tion dataset provided by the Danish news publisher Ekstra Bladet1.
This dataset includes user click history, session information, per-
sonal attributes, and detailed information about news articles. The
objective of this challenge is to predict the article that a user is
most likely to click on in a specific impression, using the user’s past
click history, session information, personal attributes, and a list of
candidate news articles.

The main goal of our research is to develop a high-accuracy
recommendation system that considers the time-dependency of
news articles. To achieve this goal, we made the following key
contributions:

(1) Proposal of an effective data splitting strategy considering
time-dependency and feature engineering techniques to sup-
press overfitting.

(2) Construction of a high-performance ensemble model com-
bining Transformer-based models and Gradient Boosting
Decision Trees (GBDT).

(3) Quantitative analysis of the impact of data leakage on model
performance.

Our code is publicly available on github.com2.

2 Data Splitting And Feature Engineering
In news recommendation systems, the rapid decline in article value
over time significantly impacts the model’s generalization perfor-
mance. This section explains our approach to addressing this issue
through data-splitting strategies and feature engineering. We also
describe feature extraction methods that include data leaks reported
in the official forum 3.

2.1 Data Splitting
Our research focused on applying effective data splitting strategies
to mitigate the impact of article value decay over time, aiming to
build a recommendation system that is resilient to temporal ef-
fects. Specifically, we designed three splitting patterns to effectively
utilize the most recent data close to the test period (June 1-7, 2023):

• Standard Split (S1): Using May 18-24, 2023, and May 25-31,
2023, as training and validation data, respectively.

1https://recsys.eb.dk/dataset/
2https://github.com/k-fujikawa/recsys-challenge-2024-1st-place
3https://www.codabench.org/forums/2387/342/
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• Retrain using validation data (S2): Using the 7 days from
May 25-31, 2023, as training data.

• Retrain using full data (S3): Using the 14 days from May
18-31, 2023, as training data.

A key feature of our approach, similar to that of Schifferer et al.
[12], is the separation of hyperparameter optimization and final
model training. We first optimize hyperparameters using S1, then
retrain the model using S2 or S3. This approach maintains hyperpa-
rameter stability while adapting to recent trends. We hypothesize
that data closer to the test period capture short-term trends more
effectively, while larger datasets enhance stability. Consequently,
we expect S2 and S3 to outperform S1.

2.2 Feature Engineering
Preliminary experiments revealed that direct use of article IDs or
textual information led to overfitting, suggesting a rapidly evolving
relationship between articles and users over time. To address this
problem andmitigate the impact of temporal decay on the relevance
of the article, we prioritize dynamic features that evolve with user
behavior and temporal factors in our feature extraction process. To
address this issue, we primarily adopted the following features:

• Used time-based features (e.g., time elapsed from article pub-
lication to impression)

• Incorporated user interaction features (e.g., time since user’s
most recent click)

• Employed similarity features between candidate articles and
user’s click history, using vector representations (e.g., TF-
IDF, embeddings) instead of raw content

These features help capture user preferences and article rele-
vance while reducing the risk of overfitting to specific article iden-
tifiers or temporary popularity. This enhances the model’s ability
to generalize across different time periods and user segments. For a
more detailed overview of key features used in our LightGBM and
Transformer-based models, including descriptions and potential
data leak types, refer to the Appendix A.

2.3 Feature Engineering with Data Leakage
To investigate the impact of data leakage, we designed features that
use data leaks to improve the accuracy of model prediction. Al-
though these features present operational challenges, they demon-
strated high efficacy in capturing the popularity and trends of the
articles. Features using data leakages are classified into three types:

• Future Article Statistics (L1): Statistics included in the
article dataset (e.g., total_inviews) that encompass behaviors
from the test period. These features function as significant
indicators of an article’s general popularity, reflecting long-
term trends.

• Future Impressions (L2): Statistics including impressions
that appear after the prediction time in the test period (e.g.,
total inviews of all users 5 minutes before and after the
prediction time). These features were effective in capturing
the short-term trends of the articles.

• Impressions Prior to Prediction Time (L3): Statistics in-
cluding impressions appearing prior to the prediction time
(e.g., total inviews of all users for 10 minutes up to 1 minute

before the prediction time) are not future data leaks. How-
ever, we define these as a type of leak because they use the
test set and would require a real-time data processing in-
frastructure to extract features too close to the prediction
time. These features, as well as L2, were highly effective in
capturing short-term trends of articles.

3 Models
Figure 1 shows an overview of the solution of our team. This section
explains the key components: Transformer-based models, GBDT-
based models, and ensemble methods.

Figure 1: Overview of the solution

Our approach utilizes a three-stage ensemble strategy to predict
the click-through rates of news articles. Stage 1 processes raw
features using the Transformer, LightGBM, and CatBoost models.
Stages 2 and 3 process outputs from previous stages using Optuna,
LightGBM, and simple averaging. This structure leverages diverse
model strengths while maintaining separate pipelines for validation
and submission.

3.1 Transformer-Based Model
In news article recommendation tasks, it is important to capture
the relationships among various elements such as impression back-
ground information, concurrently displayed article information,
and users’ past click histories. These interactions can be effectively
modeled by adopting the Transformer [13] architecture. Related
works [4, 9, 14] have proposed methods using Transformers to
model users’ past behaviors and estimate the click probability of
a single candidate. In contrast, we adopted an approach similar
to RankFormer [3], leveraging known candidate sets to simulta-
neously estimate click probabilities for multiple articles. Figure 2
shows the model architecture based on this approach.

Our model utilizes two types of input embeddings: impression
and inview embeddings, as detailed in Figure 3. Impression em-
bedding represents session-wide context information in a single
node, while inview embeddings represent features of simultane-
ously displayed articles. We use sinusoidal embedding [13] for quan-
titative features and learnable embeddings for categorical features,
as described in Section 2.2 and 2.3. Inview embeddings addition-
ally incorporate similarity embeddings, computed as the cosine
similarity between learnable embeddings of inview articles’ top-
ics/categories and those from the user’s click history. Treated as
a variable-length sequence, inview embeddings learn article im-
portance through interaction with impression embedding in the
Transformer’s self-attention mechanism.

The EB-NeRD training dataset (May 18-24, 2023) contains ap-
proximately 12 million impressions from about 780,000 users, which
presents a challenge in terms of user diversity. To address this, we
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Figure 2: Transformer-based model architecture

Figure 3: Details of impression and inview embeddings

implemented a dynamic sampling strategy, selecting 3 impressions
per user for each epoch, which effectively utilizes approximately
25% of the total impressions. This approach balances dataset repre-
sentativeness, diversity, and computational efficiency.

Our Transformer block consists of an 8-layer, 128-dimensional,
4-head Pre-LN Transformer [16]. We use binary cross-entropy loss
for training as a click classification problem. The AdamW optimizer
[8] is used with an initial learning rate of 1e-3 and a cosine decay
schedule. Experiments are done on the g2-standard-32 instance
from the Google Cloud with 1 NVIDIA L4 GPU.

3.2 GBDT-Based Model
In this study, we used two implementations of Gradient Boosting
Decision Trees (GBDT) [6]: LightGBM [7] and CatBoost [10], known
for their efficiency, accuracy, and interpretability. LightGBM excels
at processing large-scale datasets through parallel learning, while
CatBoost minimizes information loss in categorical data handling.
Combining these models aims to enhance performance through
ensemble methods while maintaining low implementation costs.

For model training, we randomly sample 20% of user impression
data, balancing data diversity and computational efficiency. We
frame the problem as a ranking task, predicting clicked articles
among candidates. We utilize LambdaRank [2], a pairwise objective,
to optimize article ranking.

Model performance is optimized by tuning key hyperparameters,
including the number of boosting rounds, the maximum depth of
the tree, the number of leaves, the feature fraction, the bagging
fraction, and the regularization parameters. Specifically, for the
LightGBM model, we set the number of boosting rounds to 400,
applied early stopping with a patience of 40 rounds, and used a
learning rate of 0.1. For the CatBoost model, we set the number
of iterations to 1000, applied early stopping with a patience of
40 rounds, and used a learning rate of 0.1. We determine optimal
combinations through fixed learning rate experiments. We adopted
early stopping to prevent overfitting and used ndcg@10 instead of
AUC, the main competition evaluation metric, for model optimiza-
tion from a computational efficiency perspective. The validity of
this approach was confirmed by the strong correlation observed
between these two metrics in both the validation and the test data.
Further implementation details can be found in the accompanying
code repository.

3.3 Ensemble Multiple Models
To further improve prediction accuracy, we adopted ensemble meth-
ods that integrate prediction scores frommultiple models. As Figure
1 shows, our process involves model integration in stage 2 and final
prediction in stage 3.

Stage 2 uses two integration approaches: optimized weighted
averaging and stacking. Optimized weighted averaging uses Op-
tuna [1] to determine the optimal weights of the prediction score,
maximizing the AUC in the validation set. The stacking approach
treats stage 1 prediction scores as new features, engineering:

• Raw and relative values of prediction scores from each model
• Relative ranking of predicted articles within impressions and
users

We perform a second learning stage using LightGBM with these
features, employing LambdaRank to extract complex patterns through
a non-linear combination of model predictions. In stage 3, we gener-
ate the final prediction score by averaging the optimized weighted
averaging and stacking scores from stage 2. This method takes
advantage of the strengths of both approaches without undue com-
plexity.

4 Experiments
This section describes the experimental design and results to verify
the effectiveness of our proposed method. We first compare the
performance of the model across different data-splitting methods,
including the impact of data leakage. Subsequently, we conducted
an ablation study to assess the importance of each component of
the model, followed by an evaluation of the effects of data leakage
on model performance.

4.1 Results
Table 1 shows the performance of each model in different data
splitting methods as described in Section 2.1. The validation set
is used only in the Standard Split (S1), while for S2 and S3, we
applied the hyperparameters determined from S1 without further
validation. All test scores are based on the period on June 1-7, 2023.
As hypothesized, we observe performance improvements from S1 to
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S2 to S3 in most models. This confirms the effectiveness of our data-
splitting strategy, which focuses on retraining using a validation
set.

Among single models, the Transformer-based model shows the
highest score. We further improved performance through pseudo-
labeling (PL), a semi-supervised learning technique. We generated
pseudo-labels for the unlabeled test set by computing a weighted
average of predictions from our single models (Transformer, Light-
GBM, and CatBoost). These pseudo-labels augmented our training
data, allowing models to learn from a larger dataset. Our exper-
iments confirm that ensemble methods combining these models
yield additional performance gains. These results demonstrate the
effectiveness of Transformer-based models, pseudo-labeling, and
ensemble methods combining diverse architectures.

Table 1: Comparison of AUC scores by data splitting method
and model. S1: Standard Split, S2: Retrain using validation
data, S3: Retrain using full data. PL: Pseudo-labeling.

Model Validation Test (S1) Test (S2) Test (S3)
Transformer 0.8734 0.8764 0.8824 0.8864
LightGBM 0.8668 0.8694 0.8800 0.8817
CatBoost 0.8652 0.8691 0.8787 0.8805
Transformer (+PL) 0.8738 0.8761 0.8883 0.8872
Ensemble 0.8802 0.8827 0.8911 0.8924

4.2 Ablation Study for Transformer-based
Model

We conducted an ablation study to verify the effectiveness of each
component in the Transformer-based model. Table 2 shows the
changes in the AUC scores when key elements are excluded ormodi-
fied. The "w/o Transformer" configuration replaces the Transformer
architecture with a Multi-Layer Perceptron (MLP) of equivalent
depth while maintaining all other components of the model.

Table 2: Ablation study results for Transformer-based model
configurations

Model configuration Validation Test (S3)
Full model 0.8734 0.8864
w/o impression features 0.8679 0.8835
w/o Transformer (replaced by MLP) 0.8280 0.8435

Excluding impression features reduced the AUC to 0.8835. This
indicates that session context information, such as user browsing
time and device information, contributes to improving prediction
accuracy. Additionally, replacing the Transformer with an MLP
with the same number of layers significantly decreased the AUC
(0.8422). This suggests that the Transformer architecture effectively
captures complex interactions between features in the news rec-
ommendation task. These results confirm that each component of
the proposed Transformer-based model contributes to performance
improvement.

4.3 Evaluation of the Impact of Data Leakage
To evaluate the impact of features using data leakage described
in Section 2.3 on model performance, we performed comparative
experiments using the Transformer-based model. The results are
shown in Table 3.

Table 3: Impact of data leakage on Transformer-based model
performance

Data usage L1 L2 L3 Validation Test (S3)
Full features ✓ ✓ ✓ 0.8734 0.8864
w/o future impressions - - ✓ 0.8495 0.868
w/o test impressions - - - 0.7483 0.7699

A significant performance difference was observed between “Full
features” and “w/o test impressions”, with a difference of 0.1165
points in AUC score on the test data. This result strongly sug-
gests the importance of careful data handling in recommendation
systems. On the other hand, the “w/o future impressions” setting,
which includes L3 (impression information from the test set more
than 1 minute before the prediction time), showed limited perfor-
mance degradation compared to “Full features”. This confirms the
importance of using short-term trends in articles as features.

5 Conclusion
This paper presented the solution by team “:D” for the news rec-
ommendation task in RecSys Challenge 2024. We introduced time-
aware feature engineering methods and effective data-splitting
strategies to address the temporal nature of news articles and im-
prove model generalization. This approach achieved a maximum
AUC score of 0.8924, marking a significant improvement over the
baseline models. Furthermore, our analysis of data leakage effects
underscored the critical role of capturing short-term trends in arti-
cles to ensure the accuracy of recommendations.

Future work includes further performance improvement when
excluding data leakage and building flexible recommendation mod-
els that also estimate the set of candidate articles itself. These ad-
vances aim to further enhance the robustness and applicability of
news recommendation systems in real-world settings.
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A Feature details
This section provides detailed information on the features used in
our LightGBM and Transformer-based models, complementing the
feature engineering discussion in Section 2.2.

Table 4 lists the top 10 most important features identified by
our LightGBM model, together with their descriptions and data
leak types (L1, L2, L3) as defined in Section 2.3. The importance
of these features, as determined by the LightGBM model, reflects
the key factors contributing to our news recommendation system’s
effectiveness.

Table 5 presents an overview of the main feature categories used
in our Transformer-based model. Although not exhaustive, this ta-
ble provides a representative sample of the most significant feature
types and their descriptions. It highlights the diverse range of in-
formation captured by our Transformer model, including temporal
aspects, user behavior, and article characteristics.
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Table 4: Description of top 10 important features in LightGBM model and their data leak types

# Feature name L1 L2 L3 Description
1 c_time_hour_diff Time difference in hours between the impression time and the publication time of the

candidate article.
2 c_common_read_time_sum_

past_and_future_5m_
rank_ascending

✓ ✓ Rank of the candidate article based on the sum of (read_time / number of candidate
articles) for impressions 5 minutes before and after, sorted in ascending order.

3 c_time_min_diff Time difference in minutes between the impression time and the publication time of the
candidate article.

4 c_user_count_past_all_
rank_descending

✓ Rank of the candidate article based on the sum of (read_time / number of candidate
articles) for all past impressions viewed by the recommended user, sorted in descending
order.

5 c_common_read_time_sum_
future_5m_rank_ascending

✓ Rank of the candidate article based on the sum of (read_time / number of candidate
articles) for impressions in the next 5 minutes, sorted in ascending order.

6 c_common_read_time_sum_
future_1h_rank_ascending

✓ Rank of the candidate article based on the sum of (read_time / number of candidate
articles) for impressions in the next hour, sorted in ascending order.

7 a_inviews_per_pageviews ✓ Ratio of total inviews to total pageviews for the candidate article.
8 c_time_sec_diff Time difference in seconds between the impression time and the publication time of the

candidate article.
9 c_topics_count_svd_sim Cosine similarity between the average vector of articles previously clicked by the user

and the vector of the candidate article, using CountVectorizer and SVD on topics.
10 c_common_read_time_sum_

past_5m_rank_ascending
✓ Rank of the candidate article based on the sum of (read_time / number of candidate

articles) for impressions in the past 5 minutes, sorted in ascending order.

Table 5: Description of features used in Transformer-based model

# Feature type Feature name L1 L2 L3 Description

1 Impression
elapsed_ts_from_history Time-related features (click history, most recent

impression)elapsed_ts_from_future ✓
elapsed_ts_from_past ✓

2 Impression
read_time

Access information included in the impressionscroll_percentage
device_type

3 Impression
num_history_articles Click history, number of future and past impressions

for the same usernum_future_articles ✓
num_past_articles ✓

4 Inview
article_sentiment_score Article features (sentiment score, time since

publication, rank within inview)article_published_ts_diff
inview_article_ts_ranks_desc

5 Inview
history_article_log_counts

Number of articles, rank, and log rank in click historyhistory_article_ranks
history_article_log_ranks

6 Inview

history_matched_topics_normed_counts_rank
Rank of topic/category overlap count with articles in
click history, embedding similarity

history_matched_category_normed_counts_rank
article_history_topics_embedding_similarity
article_history_category_embedding_similarity

7 Inview

global_article_-5m_5m_normed_counts ✓ ✓ Article statistics for specific time windows across the
entire dataset (e.g., frequency, total read time, rank
within inview)

global_article_-5m_5m_counts_rank ✓ ✓
global_article_-5m_5m_readtime_sum_rank ✓ ✓
global_article_-5m_5m_readtime_mean ✓ ✓

8 Inview
article_total_inviews ✓

Article statistics (inviews, pageviews, read_time)article_total_pageviews ✓
article_total_read_time ✓
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